
PHYSICAL REVIEW E MAY 1999VOLUME 59, NUMBER 5
Variational principle for the Navier-Stokes equations

R. R. Kerswell
Department of Mathematics, University of Bristol, Bristol BS8 1TW, England, United Kingdom

~Received 29 June 1998!

A variational principle is presented for the Navier-Stokes equations in the case of a contained boundary-
driven, homogeneous, incompressible, viscous fluid. Based upon making the fluid’s total viscous dissipation
over a given time interval stationary subject to the constraint of the Navier-Stokes equations, the variational
problem looks overconstrained and intractable. However, introducing a nonunique velocity decomposition,
u(x,t)5f(x,t)1n(x,t), ‘‘opens up’’ the variational problem so that what is presumed a single allowable point
over the velocity domainu corresponding to the unique solution of the Navier-Stokes equations becomes a
surface with a saddle point over the extended domain (f,n). Complementary ordual variational problems can
then be constructed to estimate this saddle point value strictly from above as part of a minimization process or
below via a maximization procedure. One of these reduced variational principles is the natural and ultimate
generalization of the upper bounding problem developed by Doering and Constantin. The other corresponds to
the ultimate Busse problem which now acts to lower bound the true dissipation. Crucially, these reduced
variational problems require only the solution of a series oflinear problems to produce bounds even though
their unique intersection is conjectured to correspond to a solution of the nonlinear Navier-Stokes equations.
@S1063-651X~99!08105-2#

PACS number~s!: 47.27.Ak, 47.27.Cn, 47.27.Nz, 47.10.1g
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I. INTRODUCTION

Variational methods represent a unique theoretical t
for producing rigorous inequality results relevant to fluid tu
bulence. Although turbulent solutions to the Navier-Stok
equations are not currently available, larger velocity fie
sets in which they are embedded can be. Rigorous bound
flow quantities are then derivable through optimization o
such an extended velocity domain which is designed to
isfy as many dynamical consequences of the governing e
tions as possible yet still retain its tractability. Theoretical
results can always be improved by imposing further c
straints until eventually only realizable velocity solutions a
considered.

The underlying philosophy of a variational approach va
ously christened ‘‘upper bound theory’’ by Malkus@1,2# or
the ‘‘optimum theory of turbulence’’ by Busse@3–6# is that
a fluid field becomes turbulent for a purpose which manife
itself in the maximization of some flow functional. Th
grand objective is to identify what this functional is throug
comparing the observed turbulent field with the optimizi
flow deduced from the associated variational problem for
functional. The search for this functional naturally beg
with the relevant global transport of the turbulent flow — f
example, heat flux in convection or momentum transpor
shear flow — since this is directly observable in expe
ments. Work by Howard@7# and Busse@3,5# has led to semi-
nal upper bounding results for global energy dissipation ra
in shear and convective turbulence~for reviews, see@6,8#!.
These bounds typically overestimate actual data by an o
of magnitude and it remains unclear whether the corr
asymptotic scalings with a Reynolds or Rayleigh num
have been captured. Efforts to improve these results hav
far faltered due to the mathematical complexity of the en
ing Euler-Lagrange equations, which almost immediately
comes unmanageable under the addition of further c
PRE 591063-651X/99/59~5!/5482~13!/$15.00
l

s

on
r
t-
a-

,
-

-

ts

e

n
-

s

er
ct
r
so
-
-

n-

straints @9,10#. Subsequent work has been redirected
examining new functionals@11–14# or developing novel ap-
plications@15–22#.

Recently, a new ‘‘background’’ variational formulatio
has been discovered@23–26# which differs so fundamentally
from the Howard-Busse approach that any relationship
tween them was fascinatingly unclear. It is now evident
the plane Couette flow problem that this new backgrou
approach furnishes the dual or complementary problem
that proposed by Busse@5# ~see@27,28#!. The key step in this
new formulation is the use of a nonunique velocity deco
position consisting of a steady, scalar background fieldf(z)
which carries the inhomogeneous boundary conditions an
homogeneous fluctuation fieldn(x,t) @so that u(x,t)

5f(z) x̂1n(x,t), wherex̂ is the direction of imposed shea

and ẑ the normal to the plates#, an idea that can be trace
back to Hopf@29#. This extends the variational problem ov
an enlarged set of competitor fields (f,n) in such a way that
the required energy dissipation maximum now become
saddle point. The Doering-Constantin background va
tional problem can then be recognized as a minimizing p
cedure inf to estimate this saddle point value strictly fro
above, whereas the Howard-Busse maximization problem
n provides estimates entirely from below. Practically, th
complementary or dual relationship implies that the tr
saddle point value can be bracketed between trial func
estimates derived within each procedure.

Given this dual relationship, an outstanding issue is th
whether this new background formulation offers a new a
tractable way forward in producing better bounds throu
the addition of further constraints. The purpose of this pa
is to suggest that this is so by revealing a natural path
incorporating additional constraints which ultimately leads
a variational principle for the Navier-Stokes equations. C
cially, the saddle point structure discovered in the up
5482 ©1999 The American Physical Society



ey
re
th
is
e
ep

e
c
e

t t
e

s-
ar
pr
n

ri
oin
e
r
on
st
o

ar
n
,
n

un
ke

m
e
n

oi
th
ar
in
on
th
us
h
in

e
u

ne

th

h a
ome

e

ble
er
full
le

has
ese

r the
ate
n-

ss-
a-
hes
the
lf.
t, it
nt

he
in

e-
ore
nc-
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bound problem@28# is preserved by this procedure. The k
idea is as before the degeneracy built into a nonunique
resentation of the velocity field. By successively relaxing
restricted form used for the background field until it too
eventually a three-dimensional time-dependent vector fi
depending on all three spatial variables, i.e., the velocity r
resentation is fully degenerateu(x,t)5f(x,t)1n(x,t), pro-
gressively more information is incorporated until finally th
full Navier-Stokes equations become constraints. In this s
nario, the variational problem is then one for the averag
energy dissipation rate over a fixed time interval subjec
the full constraint of the Navier-Stokes equations: in oth
words, theultimateupper bound problem for the energy di
sipation rate. Of course, for prescribed initial and bound
conditions, the Navier-Stokes equations are presently
sumed to have a unique solution rendering this variatio
problem hopelessly overconstrained for the velocity fieldu.
However, viewed over the extended function domain (f,n),
there is a saddle point structure and complementary va
tional principles are available to estimate the saddle p
from either side. Within this context, it is clear that th
‘‘fluctuation’’ field n is precisely the Lagrange multiplie
vector field imposing the Navier-Stokes equations as c
straints. The complementary variational principles for e
mating the presumed unique saddle point value and ass
ated solution intriguingly require only the solution of line
problems to make progress and therefore appear emine
tractable. Armed with these two dual pieces of machinery
feasible variational principle for the Navier-Stokes equatio
seems to arise out of an intractable-looking upper bo
problem which has as its constraints the full Navier-Sto
equations.

The detailed presentation of these ideas begins by for
lating this ‘‘ultimate’’ upper bound problem in Sec. II. Th
full background decomposition of the velocity field is the
introduced and exploited to reveal the inherent saddle p
structure which exists when the functional of interest is
dissipation rate. Complementary variational principles
then formally developed for estimating the saddle po
value and realized velocity solution in Sec. III. A discussi
of whether these variational principles actually touch at
saddle point follows in Sec. IV, before Secs. V and VI foc
on their practical implementation. Generalizations of t
Howard-Busse and Doering-Constantin upper bound
variational principles are discussed here and examined
practical algorithms for approximating solutions of th
Navier-Stokes equations. Finally, Sec. VII contains a disc
sion of the paper’s findings and their implications.

II. THE ULTIMATE UPPER BOUND PROBLEM
FOR THE DISSIPATION RATE

Consider a homogeneous, incompressible fluid of ki
matic viscosityn in a volumeV whose boundary]V is mov-
ing with some prescribed velocityV in a frame rotating atv.
Taking a typical length scaled of V and the viscous diffusion
time scaled2/n to nondimensionalize the system leads to
Navier-Stokes equations

]u

]t
12v3u1u•“u1“p5¹2u, ~2.1!
p-
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“•u50, ~2.2!

with boundary condition

u5ReV~x,t ! for xP]V, ~2.3!

where ReªV0d/n is the Reynolds number andV0 is a typi-
cal speed of the boundary. A fundamental issue for suc
system is how large the viscous dissipation rate can bec
on average over a certain period@0,T#. The long-time limit-
ing caseT→` has been considered previously within th
canonical context of plane Couette flow@5,6,10,23,24,27,
28,30–33#. There the approach has been to develop tracta
variational problems built upon only the very first pow
integral and mean momentum constraints imposed by the
system~2.1!–~2.3! to produce upper bounds on the realizab
long-time averaged~or equivalently statistically steady! en-
ergy dissipation rates. Eventually, of course, the goal
always been to add more and more constraints to bring th
bounds closer to the observed values. Here, we conside
ultimateupper bound problem for the energy dissipation r
by imposing the full Navier-Stokes equations as our co
straints.

Technically, the viscous dissipation rate is

1

2 EEE u“u1“

Tuu2dV

5EEE u“uu2dV1 R niujui , j dS ~2.4!

with the latter term uniquely determined for an incompre
ible velocity field specified on the boundary. In most situ
tions, this term is zero because either the velocity vanis
on the boundary, the boundary conditions are periodic, or
boundary is planar and only moves tangentially to itse
However, regardless of whether this term vanishes or no
plays no role in any variational analysis since it is invaria
for any incompressible velocity field which satisfies t
boundary conditions. As a result this term is suppressed
what follows, although of course ultimately it should be r
introduced to produce any total dissipation rate. We theref
look to determine stationary values of the dissipation fu
tional

DTª
1

TE0

T

^ u“uu2 & dt

2
a

TE0

TK n•H ]u

]t
12v3u1u•“u1“p2¹2uJ L dt

~2.5!

with

“•u50, u5ReVu]V ~2.6!

and some initial conditionu(x,0)5u0(x) where the bulk in-
tegral is defined as follows:

^A&~ t !ªEEEdVA~x,t !.
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~In the case of an unbounded domain such as the plane la
xPR23@2 1

2 , 1
2 #, this can be defined as

^A&~ t !ª lim
Lx ,Ly→`

1

4LxLy
E

2Lx

1Lx
dxE

2Ly

1Ly
dyE

21/2

11/2

dz A~x,t !

for example.! Here n5n(x,t) clearly plays the role of a
Lagrange multiplier which imposes the Navier-Stokes eq
tions as a constraint. We have also included an extra cons
a for comparison with earlier upper bounding work but he
it is evidently redundant and can be absorbed into
Lagrange multipliern. For flows in which absolute pressur
is not important,p is merely a Lagrange multiplier associate
with the condition of fluid incompressibility and can nat
rally be ‘‘absorbed’’ inton by insisting thatn is divergence-
free. Natural boundary conditions forn are homogeneou
and appropriate ‘‘initial’’ conditions emerge to be thefinal
conditions thatn vanishes everywhere att5T. This ensures
that the one boundary term@du•n#0

T ~wheredu is a variation
in the velocity field! produced by the variational procedu
drops. In summary, we take

“•n50, n50u]V , n~x,T!50. ~2.7!

The variational problem as formulated thus far is not imm
diately useful. The functionalDT is stationary when the
variational derivatives ofDT with respect tou andn vanish,
that is,

dDT

dn
U

u

5
dDT

du U
n

50, ~2.8!

where

F d

de
DT~u,n1eñ;a!G

e50

5
1

TE0

TK dDT

dn
U

u

•ñ L dt,

~2.9!

F d

de
DT~u1eũ,n;a!G

e50

5
1

TE0

TK dDT

du U
n

•ũ L dt.

~2.10!

The first of these variational vector equations is of course
Navier-Stokes equations, which for given initial conditio
and boundary conditions are presently presumed to ha
unique solution. The full variational problem then amoun
to finding the dissipation of this unique solution, which th
is both a maximum and minimum at once.

A reduced variational problem of some interest can
found, however, although it is not clear how effective it m
be. If the latter of the two variational criteria for stationarit

dDT

du U
n

50⇒a~“n1“

Tn!•u1“p22¹2u

52a
]n

]t
22av3n2a¹2n, ~2.11!

is considered as an equation definingu givenn, we can pro-
duce a reduced variational problem forDT„u(n),n;a… over
er,

-
nt

e

-

e

a
s

e

just the fieldn. Comparing the dissipation values associa
with two trial fields, ñ andn* , then straightforwardly leads
to the difference expression

DT„ũ~ ñ!,ñ;a…2DT„u* ~n* !,n* ;a…

5
1

TE0

TK ~ ñ2n* !•
dDT

dn
~u* ,n* !

2u“~ ũ2u* !u22a~ ũ2u* !•“ñ•~ ũ2u* ! L dt

2
a

T
@^~ ũ2u* !• ñ&#0

T . ~2.12!

If n* is the presumably unique solution to the full variation
problem, the first~linear! term on the right-hand side van
ishes. The second and third terms are assured neg
semidefiniteif we only select trial fieldsn(x,t) which satisfy
the spectral constraint:

inf
“•v50,v50u]V

^u“vu21av•“n•v&>0 ~2.13!

at every instant in timeover @0,T#. This is accurately termed
a spectral constraintfor n ~borrowing some terminology
from @24#! because it is the requirement that the eigensp
trum of the linear self-adjoint operator

L~n;a!vªa~“n1“

Tn!•v1“p22¹2v ~2.14!

is positive semidefinite over the space of incompressiblev
which vanishes on the boundary. The last~boundary! term
can be made to vanish identically by our ‘‘final’’ conditio
n(x,T)50 and carefully arranging]n/]t at t50 such that
the velocity field always satisfies the correct initial conditio
u(x,0)5u0(x). With these restrictions onñ, we can conclude
that

DT~ ũ,ñ! < DT~u* ,n* !5DT
NS, ~2.15!

or in other words we can estimate the true dissipation r
from below. Unlessn* satisfies the spectral constraint
more exceptionally there exists añÞn* with ^u“(ũ2u* )u2

1a(ũ2u* )•“ñ•(ũ2u* )&50, there is strict inequality in
Eq. ~2.15! and it is unclear how close toDT

NS one can get
using this scheme since there is no way to estimateDT

NS from
above.

A. Towards a variational principle

The problem with the variational formulation given abo
is that for DT5DT(u,n;a), one of the natural variationa
equations to be solved,dDT /dnuu50, leads directly to the
Navier-Stokes equations. This can be avoided by restruc
ing the underlying independent function fields (u,n). Replac-
ing u by a new vector~background! field f(x,t)5u(x,t)
2n(x,t), which is therefore incompressible and satisfies
same boundary conditions asu, achieves this in a perfectly
general way. The functionalDT5DT(f,n;a) is now ex-
pressible as
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a

T
@^ 1

2 n2&#0
T1DT5

1

TE0

T

dt ^u“fu2&2GT~f,n;a!

5FT~f,n;a!2
~a21!

T E
0

T

dt ^u“nu2&,

~2.16!

where

GT~f,n;a!ª
1

TE0

T

dtH K an•
]f

]t
12an•v3f

1an•f•“f1~a21!u“nu2

1an•“f•n2~a22!n•¹2fL J ,

~2.17!

FT~f,n;a!ª
1

TE0

T

dtH K u“fu22an•
]f

]t
12af•v3n

1af•“n•f1an•“n•f1~a22!n•¹2fL J .

~2.18!

The expression~2.16! is more familiarly derived within the
framework of Doering and Constantin’s background up
bounding method as follows. Taking (1/T)*0

T^n•(2.1)&dt
gives

1

T
@^ 1

2 n2&#0
T1

1

TE0

T

dtH K n•
]f

]t
12n•v3f1n•f•“f

1n•“f•n1u“nu22n•¹2fL J 50. ~2.19!

Adding an unspecified multiple,a ~@30#!, of Eq. ~2.19! to the
identity

^u“uu2&5^u“fu2&22^n•¹2f&1^u“nu2&, ~2.20!

also time-averaged over the interval@0,T#, then leads back to
Eq. ~2.16!.

The new variational equations are derived by insist
that the first variationdDT produced by variationsdn in n
and df in f vanishes. With respect to variations inn, the
variational statement is

dDT52
a

T
@^ dn•n &#0

T1
1

TE0

TK dn•
dDT

dn
U

f
L dt50

~2.21!

for all allowable variationsdn, where

dDT

dn
U

f

ª2H a
]f

]t
12av3f1af•“f22~a21!¹2n

1a~“f1“

Tf!•n2~a22!¹2f1“pnJ 50.

~2.22!
r

g

With respect to variations inf, the variational statement is

dDT52
a

T
@^ df•n &#0

T1
1

TE0

TK df•

dDT

df
U

n
L dt50

~2.23!

for all allowable variationsdf, where

dDT

df
U

n

ª22¹2f1a
]n

]t
12av3n1a~“n1“

Tn!•f

1an•“n1~a22!¹2n1“pf50. ~2.24!

Note that now the difference

dDT

dn
U

f

2
dDT

df
U

n

5
dDT

dn
U

u

~2.25!

gives the Navier-Stokes equations.
The fundamental observation to be made from Eq.~2.16!

is thatDT appears to possess classic convex-concave sa
point structure over (f,n); DT is individually quadratic in
eitherf or n and positive definite in the highest spatial d
rivative term involvingf and negative definite in that o
n(a.1). Although this proves a slight oversimplification
the overall conclusion that the presumably unique station
point of DT is a saddle point nevertheless appears justifi
The new variational equations~2.22! and~2.24! individually
form the basis of complementary variational principles
estimate this saddle point value strictly from above and
low. Taken together, of course, they offer no advantage o
the previous set~2.8!, but treated separately they natural
dismantle the nonlinearity of the Navier-Stokes equatio
This manifests itself in the fact that these complement
variational principles only require the solution of linear pro
lems.

III. COMPLEMENTARY VARIATIONAL PRINCIPLES

For definiteness in what follows, we confine our attenti
to functionsfPV andnPG, where

Vª$ f uf i~x,t !PC2~V!3C1@0,T#,

i 51,2,3;“• f50,f5ReVu]V%, ~3.1!

Gª$ n u n i~x,t !PC2~V!3C1@0,T#,

i 51,2,3; “• n50,n50u]V%. ~3.2!

Given initial conditions onu5f1n, DT has a unique sta
tionary point corresponding to the appropriate solution of
Navier-Stokes equation. We now construct two reduc
variational principles which can be used to approach t
point and its associated solution either strictly from above
below.

A. Minimization problem

The basic idea is to perform the optimization overn first
by solving the variational equation~2.22! for a given trial
background fieldf(x,t). Providing certain conditions are
met, the subsequent dissipation rate estimate can be as
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5486 PRE 59R. R. KERSWELL
to exceed the saddle point value. These conditions rev
around the temporal boundary conditions and a pointwise
time spectral condition which determines whether the cho
background trial field leads to an overestimation of t
saddle point value or not. The second optimization overf
then seeks to minimize this upper estimate of the reali
dissipation.

To force the boundary terms in both Eqs.~2.21! and
~2.23! to drop, we impose initial conditions onn andf and
insist thatn(x,T) vanishes to be consistent with the approa
taken in Sec. II. Most importantly in what follows, we mu
ensure that any possible velocity fieldu(x,t) can be repre-
sented as the sum of the trial fieldf and a fluctuation fieldn
at any time and spatial position. Given thatn(x,T)50, this
means, for example, thatf(x,T) must equal the final real
ized velocity field,u(x,T)5uNS(x,T), whereuNS(x,t) is the
Navier-Stokes solution given the initial conditionuNS(x,0)
5u0(x). Additionally, since the true starting condition forf
is also unknown, this must be chosen, for example,f(x,0)
5f0(x), which means thatn(x,0)5u0(x)2f0(x). The dis-
sipation rate functional is then expressible as

DT5
1

TE0

T

^u“fu2&1
a

2T
^~u02f0!2&2GT~f,n;a!

~3.3!

with fPV1 andnPG1, where

V1~f0!ª$ f PV uf~x,0!5f0~x!,f~x,T!5uNS~x,T!%,
~3.4!

G1~f0!ª$ n PG un~x,0!5u0~x!2f0~x!,n~x,T!50%.
~3.5!

Now, if a trial background fieldfPV1 can be chosen suc
that

inf
nPG1~f0!

GT~f,n;a!.2`, ~3.6!

then we have immediately the upper bound~@23,24#!,

DT <
1

TE0

T

^u“fu2&1
a

2T
^~u02f0!2&

2 inf
nPG1~f0!

GT~f,n;a!. ~3.7!

The crucial point is that we have this degeneracy in the
locity representation which can be used precisely at
point to advantage.Givena f(x,t) field, there is still always
a fluctuation fieldn(x,t) which can ‘‘reach’’ any realizable
velocity fieldu(x,t): as a result, Eq.~3.7! must hold foruNS.
The condition for GT to have a stationary point is tha
dDT /dn50:

a~“f1“

Tf!•n1“pn22~a21!¹2n

52a
]f

]t
22av3f2af•“f1~a22!¹2f

~3.8!
ve
-
n

d

h

-
is

which is a linear, spatial problem for n which needs no
temporal boundary conditions. The value ofGT at this sta-
tionary pointn5n* is

GT~f,n* ;a!5
1

2TE0

TK n* •H a
]f

]t
12av3f

1af•“f2~a22!¹2fJ L dt. ~3.9!

The fact that there are conditions onn(x,0) andn(x,T) must
be reinterpreted as, in fact, conditions on]f/]t at either end
of the time interval. For this stationary point to be a min
mum overG, there is the spectral condition on the bac
ground field that

^ ~a21!u“nu21an•“f•n & >0, ;nPG, ;tP~0,T!
~3.10!

which is the condition that the eigenspectrum of the line
self-adjoint operator

L~f;a!nªa~“f1“

Tf!•n1“p22~a21!¹2n

is positive semidefinite overG ;tP(0,T). This ensures tha
the important quadratic terms inGT are positive semidefinite
The function setV2,

V2ª$ f PVu^ ~a21!u“nu21an•“f•n & >0,

; nPG, ;tP~0,T!%, ~3.11!

collects together all such ‘‘allowable’’ background fields.
the selected background field marginally satisfies the spe
constraint, the self-adjoint operator to be inverted in E
~3.8! is singular. In this case, there is the solvability con
tion that the right-hand side in Eq.~3.8! must be orthogona
to the operator’s null space, and the solutionn is only deter-
mined up to this null space. This latter feature is actually
important at this stage of the optimization procedure beca
only the inhomogeneous solution contributes to infGT and
therefore affects the dissipation functional. Put another w
it is of no consequence here that this infimum may not
unique although the background trial field must be adjus
to satisfy the solvability condition. Practically, the way
bypass this extra complication is to avoid trial fields whi
are ‘‘spectrally’’ marginal.

The upper bound in Eq.~3.7! can be minimized over al
permissible background fieldsfPV1(f0)ùV2 to give the
better bound

DT< inf
fPV1~f0!ùV2

H 1

TE0

T

^u“fu2&

1
a

2T
^~u02f0!2&2 inf

nPG1~f0!

GT~f,n;a!J .

~3.12!

This optimization procedure translates into solving the t
variational equations
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dDT

dn
U

f

5
dDT

df
U

n

50 ~3.13!

over the restricted setfPV1(f0)ùV2 with nPG1 given
f0. It is at this point that any possible degeneracy in solv
the first variational equation introduced through a spectr
marginal trial background field~3.8! becomes important. The
second variational equation is an equation forf then forced
by an underdetermined fluctuation fieldn. A conceivable
resolution of this is that both operators in the two variatio
equations are simultaneously singular for the realized s
tions so that the null space degeneracy inn, say, would be
removed by the solvability condition in thef equation and
vice versa. In this scenario both variational equations wou
need to be solved simultaneously, a task more difficult th
the Navier-Stokes equation itself. The optimal solution of
Doering-Constantin upper bounding problem provides a s
plified example of this situation where only one spectral c
straint exists and this is marginally satisfied~see @27# for
details!. Realistically, perhaps only the reduced principle@in
which f remains a trial field and only Eq.~3.8! is solved# is
of practical interest.

Formally, a final minimization over the initial spatial fiel
f0(x) produces the lowest upper bound available,

DT< inf
f0PV̂

inf
fPV1~f0!ùV2

H 1

TE0

T

^u“fu2&

1
a

2T
^~u02f0!2&2 inf

nPG1 ~f0!

GT~f,n;a!J
~3.14!

or in a ~min! min-max form

DT< inf
f0PV̂

inf
fPV1 ~f0!ùV2

sup
nPG1~f0!

H 1

TE0

T

^u“fu2&

1
a

2T
^~u02f0!2&2GT~f,n;a!J , ~3.15!

where

V̂ª$ f uf i~x!PC2~V!,i 51,2,3;“• f50,f5ReVu]V%.
~3.16!

B. Maximization problem

The order of optimization can be reversed to produc
max-min procedure in the following way. The functional

DT52
a

T
@^ 1

2 n2&#0
T1FT~f,n;a!2

~a21!

T E
0

T

dt ^u“nu2&

~3.17!

is first optimized overf assumingthat the fluctuation fieldn
is known, and then optimized overn. Since we now have
direct control over the trial fluctuation field which must va
ish at t5T, it is no longer necessary to knowuNS(x,T) and
we can work with the more general background function
g
y

l
u-

n
e
-
-

a

t

V3ª$ f PV uf~x,0!5f0~x!%. ~3.18!

As before, there is a spectral constraint~now on the fluctua-
tion field n) which ensures that the dissipation rate availa
after this initial optimization overf underestimates the tru
saddle point value. We defineG2,

G2ª$ n PG u^ u“~f12f2!u2

1a~f12f2!•“n•~f12f2! & >0,

; f1 ,f2PV, ;tP~0,T!%, ~3.19!

as the set of fluctuation fields which satisfy this spectral c
straint. Membership of this set is determined by examin
whether the eigenspectrum of the linear self-adjoint opera

L~n;a!vªa~“n1“

Tn!•v1“p22¹2v ~3.20!

is positive semidefinite overG ;tP(0,T). Then, provided
nPG1(f0)ùG2, we have the lower bound

a

2T
^~u02f0!2&1 inf

fPV3

FT~f,n;a!

2
~a21!

T E
0

T

dt ^u“nu2& < DT . ~3.21!

The conditionnPG2 ensures that inffPV3
FT exists. This

infimum is identified by the solution ofdDT /df50,

a~“n1“

Tn!•f1“pf22¹2f

52a
]n

]t
22av3n2an•“n2~a22!¹2n,

~3.22!

a linear spatial problem forf. Again, if a trial fluctuation
field is chosen which is ‘‘spectrally’’ marginal, Eq.~3.22! is
subject to a solvability condition. However, as discuss
above, this issue can be ignored in the reduced problem
avoiding such marginal trial fields.

A subsequent optimization overn leads to a maximization
problem,

sup
nPG1~f0!ùG2

inf
fPV3

H a

2T
^~u02f0!2&

1FT~f,n;a!2
~a21!

T E
0

T

dt ^u“nu2&J < DT .

~3.23!

These two optimizations together amount to solving the
quired two variational equations

dDT

dn
U

f

5
dDT

df
U

n

50 ~3.24!

over the restricted setnPG1(f0)ùG2 with fPV3. A final
maximization over the initial spatial fieldf0(x) produces the
greatest lower bound,
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sup
f0PV̂

sup
nPG1~f0!ùG2

inf
fPV3

H a

2T
^~u02f0!2&1FT~f,n;a!

2
~a21!

T E
0

T

dt ^u“nu2&J < DT . ~3.25!

In summary, we have the bracketing of the realized diss
tion, thus

sup
f0PV̂

sup
nPG1~f0!ùG2

inf
fPV3~f0!

H a

2T
^~u02f0!2&

1FT~f,n;a!2
~a21!

T E
0

T

dt ^u“nu2&J
<DT< inf

f0PV̂

inf
fPV1~f0!ùV2

sup
nPG1~f0!

H 1

TE0

T

^u“fu2&

1
a

2T
^~u02f0!2&2GT~f,n;a!J . ~3.26!

IV. DO THE COMPLEMENTARY VARIATIONAL
PROBLEMS INTERSECT?

It is natural to speculate whether the complement
variational principlesattain the saddle point value; in othe
words, whether the inequality signs in Eq.~3.26! may be
more accurately replaced by equality signs. In terms of
solution @fNS(x,t),nNS(x,t)# of the full variational problem
@Eqs.~2.22! and ~2.24! subject to the initial and final condi
tions f(x,0)1n(x,0)5u0(x) and n(x,T)50], this is the
condition that

fNSPV2 and nNSPG2 . ~4.1!

If only one of these conditions is satisfied, then the sad
point value is only attained from that side although this u
symmetric situation seems unlikely. If both conditions ho
then it can be shown using convexity and concavity ar
ments that the complementary variational problems inter
at a unique saddle point. Consider the minimization probl
first for the trial background fieldf̃PV1„f

NS(x,0)… with
accompanying fluctuation fieldñPG1„f

NS(x,0)… found by
solving dDT /dn50 and compare its dissipation rate valu
with that of the Navier-Stokes solution@fNS(x,t),nNS(x,t)#.
SinceDT(f,n) is only quadratic inf and n, it is straight-
forward to show that

DT~f̃,ñ;a!2DT~fNS,nNS;a!

5@DT~f̃,ñ;a!2DT~f̃,nNS;a!#

1@DT~f̃,nNS;a!2DT~fNS,nNS;a!#

5
1

TE0

T

dtK dDT

dn
~f̃,ñ!•~ ñ2nNS!

2
1

2

d2DT

dn2
~f̃,ñ!~ ñ2nNS!
a-

y

e

le
-
,
-
ct

1
dDT

df
~fNS,nNS!•~f̃2fNS!

1
1

2

d2DT

df2
~fNS,nNS!~f̃2fNS!L . ~4.2!

Here by initial assumptiondDT /dn(f̃,ñ)50 and the second
functional derivative terms are

K 2
1

2

d2DT

dn2
~f̃,ñ!~ ñ2nNS!L
5

1

TE0

T

^ ~a21!u“~ ñ2nNS!u2

1a~ ñ2nNS!•“f̃•~ ñ2nNS! &dt, ~4.3!

K 1

2

d2DT

df2
~fNS,nNS!~f̃2fNS!L
5

1

TE0

T

^ u“~f̃2fNS!u2

1a~f̃2fNS!•“nNS
•~f̃2fNS! &dt. ~4.4!

With conditions~4.1! satisfied, the last term in Eq.~4.2! is
positive semidefinite and then, providingf̃ satisfies the
spectral constraint that the expression in Eq.~4.3! is positive
semidefinite for allñPG (f̃PV2), a global minimum is
assured at@fNS,nNS#. For uniqueness of this minimum, w
need to establish the nonexistence of fields@f̃,ñ# distinct
from @fNS,nNS# for which Eqs.~4.3! and ~4.4! vanish iden-
tically. Since the integrands of both these expressions
supposedly positive semidefinite, they must in fact van
pointwise in time. This implies that the two equations

a~“f̃1“

Tf̃!•~ ñ2nNS!1“p122~a21!¹2~ ñ2nNS!50,
~4.5!

a~“nNS1“

TnNS!•~f̃2fNS!1“p222¹2~f̃2fNS!50
~4.6!

must be satisfied; tP(0,T) in addition to the variational
equationdDT /dn(f̃,ñ)50. As an overspecified system fo

@f̃,ñ#, this indicates~but does not prove! that the global
minimum is unique.

In the maximization case, consider a trial fluctuation fie
n̂PG1„f

NS(x,0)… and its accompanying background fieldf̂
PV1„f

NS(x,0)… found by solvingdDT /df50 and compare
its dissipation rate value with that of the Navier-Stokes
lution @fNS(x,t),nNS(x,t)#,
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DT~f̂,n̂;a!2DT~fNS,nNS;a!

5@DT~f̂,n̂;a!2DT~fNS,n̂;a!#

1@DT~fNS,n̂;a!2DT~fNS,nNS;a!#

5
1

TE0

TK dDT

dn
~fNS,nNS!•~ n̂2nNS!

1
1

2

d2DT

dn2
~fNS,nNS!~ n̂2nNS!

1
dDT

df
~f̂,n̂!•~f̂2fNS!

2
1

2

d2DT

df2
~f̂,n̂!~f̂2fNS!L dt. ~4.7!

HeredDT /df(f̂,n̂)50 by initial assumption and

K 2
1

2

d2DT

dn2
~fNS,nNS!~ n̂2nNS!L

5
1

TE0

T

^ ~a21!u“~ n̂2nNS!u2

1a~ n̂2nNS!•“fNS
•~ n̂2nNS! &dt, ~4.8!

K 1

2

d2DT

df2
~f̂,n̂!~f̂2fNS!L

5
1

TE0

T

^ u“~f̂2fNS!u2

1a~f̂2fNS!•“n̂•~f̂2fNS! &dt. ~4.9!

With conditions~4.1! satisfied, the second term of Eq.~4.7!
is positive semidefinite and then, providingn̂ satisfies the
dual spectral constraint that the expression in Eq.~4.8! is
positive semidefinite for allf̂PV (n̂PG2), a global maxi-
mum is assured at@fNS,nNS#. Uniqueness depends on th
same arguments as before.

It is difficult to establish whetherfNSPV2 or nNSPG2
since these are global properties over the whole spacesG and
V, respectively. This very fact, however, naturally sugge
that these conditions be interpreted as some sort of ‘‘sta
ity’’ criteria. Doering and Constantin@26# have already no-
ticed some similarity between the spectral constraint and
ergy stability arguments in their upper bound formulatio
However, this connection is not borne out in the broa
variational context discussed here. Instead, their interpr
tion seems to lie simply with the attribute of making th
dissipation extremal. IfnNSPG2, then from Eq.~4.2!

DT~fNS,nNS! < DT~f,nNS!, ;fPV ~4.10!

so that dissipation~for n5nNS) is minimized by the realized
background field, whereas iffNSPV2, then
s
il-

n-
.
r
a-

DT~fNS,n! < DT~fNS,nNS!, ;nPG. ~4.11!

Unfortunately, this interpretation is merely that and does
offer any clues as to how the conditions~4.1! may be estab-
lished. An observation already made in Secs. III A and II
regarding ‘‘spectrally’’ marginal trial fields is worth revisit
ing here. If one of the realized fields, sayfNS, is spectrally
marginal, then the operator to be inverted in Eq.~3.8! ~to
identify nNS) is singular. The solvability condition~s! then
indirectly imposed onfNS together with the null space de
generacy innNS seem to necessitate that the operator in
other variational equation also be singular with the sa
dimensional null space. Talking broadly, this null space
generacy infNS is then of the right dimension to accommo
date the solvability condition~s! in the nNS equation andvice
versa. In this scenario, it does not necessarily follow thatnNS

is also spectrally marginal but merely that the eigenspect
of the operator in Eq.~3.20! has a zero. Nevertheless, th
argument at least indicates that Eq.~4.1! is not obviously
flawed and perhaps hints at a way forward. This issue is
course, of fundamental interest since proving Eq.~4.1! would
appear to guarantee thatDT can only have one stationar
point and therefore that the Navier-Stokes equations hav
unique solution for given initial conditions.

V. IMPLEMENTATION: THE MINIMIZATION PROBLEM

So far the focus has been to formally establish the e
tence of complementary variational principles based up
certain spectral constraints and to discuss whether they m
in a unique saddle point. Here we concentrate upon th
implementation by discussing reduced versions of th
variational principles with a view to realizing both upper a
lower bounds on the dissipation in plane Couette flow.

The minimization problem formulated in Sec. III A re
quired the knowledge of the final realized velocityuNS(x,T)
which will usually be unavailable. Consequently, we pres
here a more useful and only very slightly ‘‘less-sharp’’ vari
tional problem which upper bounds the functional

DTªDT1
a

2T
^n2~x,T!&

5
1

TE0

T

dt ^u“fu2&1
a

2T
^n2~x,0!&2GT~f,n;a!

~5.1!

and thereforeDT . Provided the trial background fieldf is
chosen inV3(f0)ùV2 and fluctuation fields which solve

dDT

dn
U

f

50 ~5.2!

are in

G3~f0!5$ n PG un~x,0!5u0~x!2f0~x! %, ~5.3!

then
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DT <
1

TE0

T

dt ^u“fu2&1
a

2T
^~u02f0!2&

2 inf
nPG3~f0!

GT~f,n;a!. ~5.4!

The key step is being able to remove the boundary te

^ 1
2 n2(x,T)& from variational consideration: this lifts th

troublesome requirement thatn(x,T)50. Certainly in the
case of turbulent flows we can anticipate that the final kine
energy term which separatesDT and DT will become less
significant relative to the dissipative terms asT increases so
that ultimatelyDT→DT asT→`.

The exact form of the trial background field chosen h
profound consequences on the constraints actually being
plied to the upper bound minimization problem. We illustra
this in the case of plane Couette flow where an incompre
ible fluid in the region (x,y,z)PR23@2 1

2 , 1
2 # is subjected to

shearing boundary conditionsu(x,y,6 1
2 )57 1

2 Rex̂.

A. One-dimensional steady background fields:f5f„z… x̂

The choice of a steady, scalar background fieldf

5f(z) x̂ is the simplest possible one consistent with t
boundary conditions in plane Couette flow. The variatio
equationdDT /dnuf50 is now simply

af8F n3

0

n1

G1“pn22~a21!¹2n5~a22!f9F 1

0

0
G

~5.5!

@@28#, Eq. ~2.39!#. However, there is no guarantee that t
steady solution to this equation will have the correct init
conditionsn05u02f0(z) x̂. In this case it is clear that only
the limiting caseT→` in Eq. ~5.4! makes sense since the
the initial conditions drop entirely from the problem. Th
subsequent upper bound onD` is then a supremum overall
possible initial conditions. This is the upper bound proble
initially proposed by Doering and Constantin@23,24# and
improved by Nicodemuset al. @30#. Simple trial fields have
been used to deduce rigorous bounds on the dissipa
@23,30,34# as well as more sophisticated examples in a
tailed numerical study by Nicodemus, Grossman, and Ho
aus@32,33#. This latter work has proved especially importa
not only in establishing the practicality of this upper bou
problem but also in indirectly confirming previou
asymptotic work by Busse@5# in the dual problem~see@28#!.

Given the larger variational context within which this r
duced problem lies, it is now clear what constraints are
tually being imposed. In the limitT→`, the functional given
in Eq. ~2.5! is

D`ª lim
T→`

1

TE0

T

^u“uu2& dt2 lim
T→`

a

TE0

T

^u•N& dt

1E
21/2

1/2

f lim
T→`

a

TE0

T

N1̄dt dz, ~5.6!

where
m

ic

s
p-

s-

l

l

on
-
-

t

c-

Ā~z,t !ª lim
Lx ,Ly→`

1

4LxLy
E

2Lx

1Lx
dxE

2Ly

1Ly
dy A~x,t !

is the horizontal mean andN50 indicates the Navier-Stoke
equations~here withv50),

Nª

]u

]t
1u•“u1“p2¹2u,

so thatN150 is the x̂ component. Bothf and a signify
Lagrange multipliers in this expression linked with speci
constraints. Taking variations inf requires that the long-
time average~or equivalently statistical average! of the hori-
zontally averaged Navier-Stokes equation in thex̂ direction
be satisfied~i.e., vanish!. Subsequent optimization over th
balance parametera imposes the total power integral as n
ticed before@@28#, Eq. 2.67!#.

The result of this minimization procedure is therefore t
maximum dissipation possible subject to this subset of c
straints derived from the Navier-Stokes equations, and
such constitutes an upper bound on the true dissipation.
upper bound may also be estimated frombelowby reversing
the order of optimization. Eliminatingf(z) by solving
dD` /dfun50 leaves a maximization problem overn. This
is essentially how Busse@5# obtained his first estimate of thi
upper bound from below. Rather than dealing with the f
functional D` and using the degenerate representationu
5f(z) x̂1n(x,t), Busse appealed to a number of plausib
physical arguments to lead directly to a maximization pro
lem overv5n2n̄, thereby shortcutting the formal procedu
outlined above~see@28# for details!. It is clear here that the
optimization procedure overf anda incorporates precisely
the physical information that Busse built directly into h
problem.

The fact that this maximization problem can surpass
true dissipation is of course tied in with the restricted form
the background field. Choosing a trial fluctuation fieldn(x,t)
and minimizing overf5f(z) x̂ is no longer guaranteed t
lower bound the true dissipation sincen(x,t)1f(z) x̂ is now
not general enough to encompass all possible velocity fie
for a givenn(x,t).

B. Three-dimensional background fields:f5f„x…

Allowing the trial background field to be three
dimensional permits more information to be incorporat
from the Navier-Stokes equations and hence should lead
lower ~better! upper bound. In particular, Eq.~5.6! becomes

D`ª lim
T→`

1

TE0

T

^u“uu2& dt2 lim
T→`

a

TE0

T

^u•N& dt

1K f• lim
T→`

a

TE0

T

N dtL . ~5.7!

Optimization with respect to the Lagrange multiplierf then
incorporates the requirement that the steady Navier-Sto
equations be satisfied. Improvement of the bound, howe
is not automatically guaranteed unless the new constra
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imposed disallow previous optimizing solutions. Section
of @28# discusses the use of the two-dimensionalz-dependent
background field choicef5f1(z) x̂1f2(z) ŷ in plane Cou-
ette flow. The extra constraint applied compared to using
background fieldf5f(z) x̂ is that the steady, horizontall
averagedy component of the Navier-Stokes equation m
vanish. Since Busse’s optimizing solution already satis
this new constraint, the optimal choice off2(z) is trivially 0
and no improvement results.

Again this upper bound may be estimated from below
reversing the order of optimizations to produce a maximi
tion problem overn.

C. One-dimensional unsteady background fields:f5f„z,t… x̂

A time-dependent, one-dimensional background field
pending only onz is the simplest choice which allows upp
bounds dependent on initial conditions to be explored. T
functional is

DTª
1

TE0

T

^u“uu2& dt2
a

TE0

T

^u•N& dt

1
a

TE0

TE
21/2

1/2

f N1̄ dz dt, ~5.8!

which means that the horizontally averaged first compon
of the Navier-Stokes equation is the applied constraint.
mentioned before, sincedDT /dnuf50 is a purely spatial
problem forn given f, the initial conditionn(x,0)5u0(x)
2f0(z,0)x̂ is in fact a condition on]f/]t(z,0). Given the
restricted form of the background field, only a subset of i
tial conditions will be accessible. The challenge then
comes one of finding a time-dependent background fi
which gives the best~lowest! upper bound. The spectral con
straint is a pointwise condition in time and so only the spa
structure of the background field is important in this respe
Constructing a valid background field amounts to specify
a smooth time path across sets of allowable spatial fie
parametrized by time. Since the forcing boundary conditio
are steady for plane Couette flow, one set of allowable ba
ground spatial fields at a given Reynolds number,

Ṽ2ª$ f uf~z!PC2@2 1
2 , 1

2 #, f~6 1
2 !

57 1
2 Re,^ ~a21!u“nu21an•“f•n & >0, ; nPG%,

~5.9!

can be used to select background profiles throughout the
interval. It is straightforward to show that the setṼ2 is con-
vex; if f1(z) andf2(z) satisfy the spectral constraint, the
so doeslf11(12l)f2 for lP@0,1#. Additionally, the set
is nonempty for any Reynolds number Re. For a backgro
spatial fieldf(z) to be in Ṽ2, the sign-indeterminate term
a/(a21)^f8n1n3& must be dominated by the positive
definite term^u“nu2& for all permissable fluctuation fieldsn.
Since trial background fields will scale with Re through t
boundary condition, the former term can be made as sma
required relative to the latter positive definite term by red
ing Re. As a result, every practical background field ha
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critical Reynolds number below which it satisfies the spec
constraint. In particular, the steady laminar solutionu

52Rez x̂ is in Ṽ2 for Re<Reabs, where Reabsis the energy
stability limit @30,35#. For these Reynolds numbers, th
background field should be designed to evolve from its ini
state to the steady laminar state since thisis the correct
~long-time! Navier-Stokes solution~with n→0). At higher
Reynolds numbers above the energy stability threshold,
fluid may or may not be attracted to the laminar state
pending on the initial conditions. Since the laminar state
no longer a valid background field for these Reynolds nu
bers, other nearby choices must be made. These o
choices, of course, still permit the laminar state to be
proached ultimately but now necessarily through an acco
panying nontrivial fluctuation field.

Constructing more general background fields clearly
lows more information from the Navier-Stokes equations
be built into the variational problem as constraints; see
pressions~5.6!, ~5.7!, and~5.8!. Also clear from these is the
nontrivial role played by the parametera. Although upper
bounds emerge for anya.1, these bounds can be furthe
optimized overa. This is in contrast to the maximizatio
problem, wherea merely acts to renormalizen.

VI. IMPLEMENTATION:
THE MAXIMIZATION PROBLEM

The interestingly novel feature in the maximization pro
lem is the spectral constraint on the trial fluctuation fie
Unlike that on the background field, this does not depend
the Reynolds number since the fluctuation field has homo
neous boundary conditions. The set of permissible fluct
tion spatial fields is then unique for a given system~modulo
a renormalization ina). The Reynolds-number dependen
is associated with the background field and enters thro
the solution ofdDT /dfun50 into the dissipation functional

The emphasis in producing best lower bounds is also
tinctly different from that in the upper bounding case. The
the underlying philosophy is generally to select the ba
ground profile of least dissipation which is still consiste
with the spectral contraint. In the lower bound problem, flu
tuation fields which willmaximizethe dissipation are sough
subject to the spectral constraint, which suggests selec
the most complicated field available. It is therefore, for e
ample, of little consequence thatn50 is always allowed as a
trial function since beyond Reabs this is not assured to give
the best~largest! lower bound on the dissipation.

A. Steady fluctuation fields: n5n„x…

As before in the background field case, choosing a ste
fluctuation field forces the long-time limit to be taken an
means that only a dissipation infimum can be produced o
all initial conditions. Since initial conditions appropriate
the laminar flow solution,u52Rez x̂, are possible for all
Re, this infimum will always be the laminar dissipation a
hence trivial. A time-dependent trial fluctuation field is r
quired to avoid this scenario.
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B. Unsteady fluctuation fields:n5n„x,t…

A fully three-dimensional, unsteady fluctuation field d
pendent on all three spatial variables potentially imposes
complete Navier-Stokes equations as constraints on
lower bound problem @see Eq. ~2.5!#. Provided n
PG1(f0)ùG2, we have the bound

a

2T
^~u02f0!2&1 inf

fPV3

FT~f,n;a!2
~a21!

T E
0

T

dt ^u“nu2&

< DT , ~6.1!

where

inf
fPV3

FT~f,n;a!

5
1

2TE0

TK 2an•
]f*

]t
1an•“n•f*

1~a22!n•¹2f* L
1@f* •]z~2f* 2~a22!n!#z521/2

z51/2 dt ~6.2!

andf* solvesdDT /df50. Formally, for given initial con-
ditions onu, the trial field n must be designed so that th
solution ofdDT /dfun50 is u0(x)2n(x,0) at t50. This re-
quires that

]n

]t
~x,0!5

1

a
$2a~“n1“

Tn!•f2“pf

12¹2f2an•“n2~a22!¹2n%f5u02n~x,0! ,

~6.3!

where pf merely ensures thatn remains incompressible
Since the set of spatial fluctuation fields~call it G̃2) which
satisfy the spectral constraint is convex as before, b
n(x,0) and]n/]t(x,0) should be members ofG̃2 to ensure
that n(x,t.0) is too. Convexity ofG̃2 means that the tria
background field can smoothly evolve to visit various kno
spatial fluctuation fields inG̃2. Finally, sincen50 is in G̃2
reaching the required end pointn(x,T)50 does not present a
problem. Practically,u0 should not be specified at the ons
but determineda posteriori given an allowable backgroun
field at t50. Once the initial conditions have been set, th
the evolution ofn for t.0 is open to adjustment in th
search for the largest dissipation lower bound.

This procedure has obvious possibilities for exploring
instability of laminar flows from the prospective of an initi
value problem. In the particular example of plane Coue
flow, presumed linearly stable at all Reynolds numbers,
formation concerning threshold amplitudes for instabil
may be available by demonstrating that the dissipation m
exceed the laminar dissipation for given initial conditions
T→`. This application makes it clear how retaining tim
dependence enriches these bounding problems since
then is the fundamental dynamical concept of stability
cluded. The simplest such problem available has a tim
e
he

th

n

e

e
-

st
s

nly
-
e-

dependent trial fluctuation field of the formn5n(z,t) x̂
which leads to the dissipation functional

DTª
1

TE0

T

^u“uu2& dt2
a

TE0

TE
21/2

1/2

n N1̄ dz dt. ~6.4!

The horizontally averagedx component of the Navier-Stoke
equations is imposed as a constraint and therefore only
bility characteristics associated with this one time-depend
equation can be incorporated. Given the restricted form
the trial fields, only a special subset of initial conditions c
be possible. Nevertheless, providing these conditions are
ferent from the laminar profile, there is still the possibility
establishing bounds on the threshold amplitude for instab
of the laminar state. As before in the trial background fie
case, these lower bounds can all be estimated from abov
reversing the order of optimization.

VII. DISCUSSION

In this paper we have revealed how to embed the d
upper bound formulations of Doering-Constantin and Bu
within a grander variational framework found by exploitin
the full degeneracy of the background-fluctuation veloc
decomposition: see Fig. 1. In this framework, it is clear ho
to manufacture successively more constrained upper
now lower bounding problems on the fluid’s dissipation un
ultimately the Navier-Stokes solution itself is the optim
solution. At this point the upper and lower bounding pro
lems represent complementary variational principles for
timating the true dissipationand the Navier-Stokes solution
~in the dissipation norm!. Presently it is unclear whethe
these dual principles actually touch at the Navier-Stokes
lution. Establishing this would prove the uniqueness of
Navier-Stokes solution for given initial and boundary con
tions.

The novel introduction or rather retention of time depe
dence in the variational problems discussed here certa
offers new challenges for their implementation. Time dep
dence undoubtedly adds another layer of complexity to
numerical study recently completed by Nicodemuset al.
@32,33# where the spectral constraint has already been s
cessfully implemented. However, the corresponding rewa
seem encouragingly high. Aspects of hydrodynamic stabi
can now be included along with the sensitivity to initial co
ditions now known to be so important for most hydrod
namic stability problems. In particular, only a lower boun
problem incorporating time dependence can ‘‘rise abov
the trivial laminar dissipation infimum.

From the prospective of ‘‘upper bound theory’’@1,2# or
the ‘‘optimal theory of turbulence’’@3–6#, it is natural to ask
whether other functionals apart from the dissipation may a
share the variational structure revealed here. In other wo
is the dissipation functional special in some sense? Certa
there is nothing profound in the initial construction of th
functionalDT given in Eq.~2.5!. However, written in terms
of f andn, it is clear that to obtain the crucial saddle poi
structure, the constraint expression must contribute exa
the right term to make the overall functional negativ
definite in the highest derivative term involvingn, i.e.,
(1/T)*0

T^u“nu2&dt. If the base functional~which of course
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FIG. 1. This schematic summarizes the variational framework. The upper bound problem forD`
(U) is based upon the representationu

5f(z) x̂1n(x,t). The minimization/maximization procedures are the original Doering-Constantin/Busse problems. The first feasibl

problem for D`
(L) is based uponu5f(x,t)1n(z,t) x̂. The ultimate Doering-Constantin and Busse problems revolve around the

degenerate formu5f(x,t)1n(x,t). The dashed lines acknowledge the possibility that these problems may not actually intersect
Navier-Stokes solutionDT

NS.
-
e

he
n

has to be expressible in terms of the physical velocityu
5f1n) is of higher order, for example, (1/T)*0

T^u¹2uu2&dt,
the constraint~in its present form at least! is too weak to
transform this into a saddle point over (f,n) ~leaving aside
any boundary condition issue!. Base functionals of lower or
der can lead to saddle point structure but problems aris
trying to solve the variational equation associated withf
since it will now have too many boundary conditions. T
kinetic energy functional provides an example of this. Defi
ing

KTª
1

TE0

T

^ 1
2 uuu2 & dt2

a

TE0

TK n•H ]u

]t
12v3u

1u•“u1“p2¹2uJ L dt ~7.1!

leads to the expression
in

-

a

T
@^ 1

2 n2&#0
T1KT

5
1

TE0

T

dtK ~ 1
2 ufu21af•“n•f!

2~au“nu22 1
2 unu21an•“f•n!

1f•n2an•
]f

]t
22an•v3f1an•¹2fL .

~7.2!

Here, the spectral constraints onf and n are, respectively,
that

^au“nu22 1
2 unu21an•“f•n&>0, ;nPG, ~7.3!

^ 1
2 uvu21av•“n•v&>0, ;vPG.

The variational equationdKT /dfun50 given n is purely al-
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gebraic inf, so that the solution is forced to be discontin
ous in general at the boundaries. This, however, suggests
the kinetic energy plus a nonvanishing dissipation p
should work as would presumably other lower order fun
tionals added to the dissipation.
si

.

hat
rt
-

Finally, it is worth remarking that the ideas discussed h
generalize in a perfectly straightforward way when furth
governing equations are present; for example, the induc
equation in magnetohydrodynamics and the heat equatio
convection. This merits separate discussion elsewhere.
D
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